High-performance ceramics are regarded as one of the key technologies of the coming decades. Whether it’s energy, mobility or medicine, without them, quantum leaps in many of our pressing future issues would not be possible. This is why researchers, manufacturers, and users worldwide are continuing to develop intelligent materials. ceramitec in Munich will show you where international research currently stands and new fields of application for high-performance ceramic materials. Get an overview of the material of the future in the shortest possible time.
The best of everything – in the individual mixture of synthetic powders, polymers combine to form high-performance ceramic materials. The sum of their different strengths makes the new ceramic materials exceptionally resilient. Polymer ceramics belong to the non-metallic inorganic materials in technical ceramics. The Fraunhofer Institute for Ceramic Technologies and Systems IKTS defines them as “inorganic-organic composites consisting of ceramic fillers and a matrix of organic polymers – particularly polysiloxanes.” Wolfgang Verbeck and Gerhard Winter from Bayer AG, and Seihi Yajima from Japan’s Tohoku University in Sundai were the first to ceramicize polymers in the 1990s. A lot has happened in this field of materials science since then.
High-performance ceramics are conquering more and more systems as key components. The advanced ceramic solutions are primarily used where material is subject to high loads. At the trade fair in Munich, international manufacturers and users will discuss the still young material in application areas ranging from mechanical engineering to medical technology. The world’s leading experts from science and industry will be at the trade fair. Visitors will benefit from top material expertise in a rapidly growing market segment and gain first-hand insights into new applications and manufacturing processes.
Similar to powder metallurgy, powders are prepared, shaped, thermally treated, and then processed. In his article “Vom Polymer zur Keramik mit metallischen Eigenschaften” (From polymer to ceramic with metallic properties), published in 2022 by Springer Professional 2022, Thomas Siebel divides the manufacturing process into four steps:
The big difference compared to other technical ceramics lies in the pyrolysis of the polymers. At relatively low temperatures, the low-molecular components evaporate and the polymers cross-link. As the temperature rises, the organometallic compounds decompose; above 1,000 degrees Celsius, the material becomes ceramic and more dense. These unique processes are crucial for the production of polymer ceramics and ceramic polymers, which are irreplaceable in many high-performance applications.
Around twenty manufacturers from Europe and all over the world will be represented at ceramitec in Munich. The exhibitors include:
On the scientific side, the Fraunhofer Institute for Ceramic Technologies and Systems IKTS is actively involved in the framework program.
Virtually indestructible thermally, extremely resilient mechanically, and almost indecomposable chemically, polymer ceramics are used wherever top performance is required. They retain their shape and size at any temperature, conduct electricity and heat, and have dielectric properties. With functional fillers and binder systems, they can be adapted to a host of applications.
In practice, their properties and functions as components in the energy, automotive, or aerospace industry enable them to withstand extreme heat. Process engineering in the chemical, food, or biotechnology industry benefits from their exceptional hardness. Their mechanical resilience is particularly useful in medical technology. As functional materials, they achieve great things in electrical engineering, microelectronics, and nanoelectronics.
Ceramic polymers can be found as high-performance ceramics in many optical, electromagnetic, nuclear, chemical, mechanical, and thermal fields of application.
The development of high-performance ceramic materials is still in its infancy. At ceramitec, you will receive a comprehensive overview of the rapid development, the current status of application-oriented research and future areas of application. In addition to traditional applications, innovative uses for polymer ceramics and ceramic polymers will also be presented. Take the opportunity to find out about the latest trends and topics in this growth market and make contacts with leading experts and companies in the industry.
High-performance ceramic materials are made from a mixture of synthetic powders. The sum of their individual properties results in a material that significantly enhances the respective application. These materials are essential for applications that require exceptional strength, durability and performance.
Virtually indestructible thermally, extremely resilient mechanically, and almost indecomposable chemically, polymer ceramics are used wherever top performance is required. They retain their shape and size at any temperature, conduct electricity and heat, and have dielectric properties.
For high-performance materials, substances are prepared as powder, shaped, thermally treated, and then processed. The big difference compared to other technical ceramics lies in the pyrolysis of the polymers. In this process, polymers are thermally treated, causing them to cross-link and transform into ceramic structures.
The most common applications for high-performance ceramic materials are in power generation and storage, mechanical and plant engineering, the mobility sector, optics, electrical engineering, medical technology, and many cross-sectional technologies. They withstand loads with thermal, chemical and mechanical resistance.
The discovery that polymers can be combined from several substances and that the sum of their individual properties results in materials that can withstand even greater stresses has considerably improved the performance of ceramic materials.